An extremophile D. radiodurans encodes a non-cold shock inducible cold shock protein homolog DR_0907 (also known as PprM). The DR_0907 ORF was deleted by knockout mutagenesis and the resultant deletion mutant (ΔpprM D. radiodurans) displayed growth defect as well as gamma-radiation sensitivity (D10 values = ΔpprM D. radiodurans: 12.1 kGy versus wild type (WT) D. radiodurans: 14 kGy). 2D gel based comparative proteomics revealed a comparable induction of DNA repair proteins in ΔpprM D. radiodurans and WT D. radiodurans recovering from 5 kGy gamma irradiation (60Co gamma source, dose rate: 2 kGy/h), suggesting that pprM does not cause radiation sensitivity through modulation of DdrO-regulated DNA repair genes. However, deletion of pprM did result in repression of several proteins that belonged to vital housekeeping pathways such as metabolism and protein homeostasis that might contribute to slow growth phenotype. These deficiencies intrinsic to ΔpprM D. radiodurans might also contribute to its radiation sensitivity.
Keywords: Deinococcus radiodurans; Gamma-radiation; Gyrase B; Housekeeping pathways; PprM.
Copyright © 2018 Elsevier B.V. All rights reserved.