Purpose: To develop and evaluate a technique for 3D dynamic MRI of the full vocal tract at high temporal resolution during natural speech.
Methods: We demonstrate 2.4 × 2.4 × 5.8 mm3 spatial resolution, 61-ms temporal resolution, and a 200 × 200 × 70 mm3 FOV. The proposed method uses 3D gradient-echo imaging with a custom upper-airway coil, a minimum-phase slab excitation, stack-of-spirals readout, pseudo golden-angle view order in kx -ky , linear Cartesian order along kz , and spatiotemporal finite difference constrained reconstruction, with 13-fold acceleration. This technique is evaluated using in vivo vocal tract airway data from 2 healthy subjects acquired at 1.5T scanner, 1 with synchronized audio, with 2 tasks during production of natural speech, and via comparison with interleaved multislice 2D dynamic MRI.
Results: This technique captured known dynamics of vocal tract articulators during natural speech tasks including tongue gestures during the production of consonants "s" and "l" and of consonant-vowel syllables, and was additionally consistent with 2D dynamic MRI. Coordination of lingual (tongue) movements for consonants is demonstrated via volume-of-interest analysis. Vocal tract area function dynamics revealed critical lingual constriction events along the length of the vocal tract for consonants and vowels.
Conclusion: We demonstrate feasibility of 3D dynamic MRI of the full vocal tract, with spatiotemporal resolution adequate to visualize lingual movements for consonants and vocal tact shaping during natural productions of consonant-vowel syllables, without requiring multiple repetitions.
Keywords: dynamic MRI; dynamic speech imaging; golden-angle stack-of-spirals; lateral production; rapid vocal tract shaping; speech articulation.
© 2018 International Society for Magnetic Resonance in Medicine.