High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting

Nano Lett. 2018 Dec 12;18(12):7665-7673. doi: 10.1021/acs.nanolett.8b03322. Epub 2018 Nov 13.

Abstract

Solar energy promises a viable solution to meet the ever-increasing power demand by providing a clean, renewable energy alternative to fossil fuels. For solar thermophotovoltaics (STPV), high-temperature absorbers and emitters with strong spectral selectivity are imperative to efficiently couple solar radiation into photovoltaic cells. Here, we demonstrate refractory metasurfaces for STPV with tailored absorptance and emittance characterized by in situ high-temperature measurements, featuring thermal stability up to at least 1200 °C. Our tungsten-based metasurface absorbers have close-to-unity absorption from visible to near-infrared and strongly suppressed emission at longer wavelengths, while our metasurface emitters provide wavelength-selective emission spectrally matched to the band-edge of InGaAsSb photovoltaic cells. The projected overall STPV efficiency is as high as 18% when a fully integrated absorber/emitter metasurface structure is employed, which is comparable to the efficiencies of the best currently available commercial single-junction PV cells and can be further improved to potentially exceed those in mainstream photovoltaic technologies. Our work opens a path forward for high-performance STPV systems based on refractory metasurface structures.

Keywords: Metasurfaces; high temperature; refractory metamaterials; solar absorbers; solar thermophotovoltaics; thermal emitters.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't