The electron cyclotron emission (ECE) diagnostic on the experimental advanced superconducting tokamak (EAST) was upgraded recently to provide electron temperature profile measurement with wider radial coverage and better precision. The lower limit of the ECE detection frequency band was extended from 104 GHz to 97 GHz by adding a new 8-channel heterodyne radiometer, which ensures capability for the measurement of the second harmonic ECE with toroidal magnetic field down to 1.75 T. Also, the existing 32-channel heterodyne radiometer has been upgraded, with the frequency interval for the lower frequency range up to 120 GHz reduced from 2 GHz to 1 GHz by introducing eight channels in the intermediate frequency part. In addition, a plan is presented to incorporate tunable yttrium iron garnet filters into the existing heterodyne radiometer to obtain detailed measurements of the electron temperature gradient scale length as well as finer spatial pinpointing of magnetohydrodynamic modes. Examples from DIII-D are provided where similar ECE diagnostic allowed precise measurement of the center and width of neoclassical tearing modes.