Rapid Responses to Abiotic Stress: Priming the Landscape for the Signal Transduction Network

Trends Plant Sci. 2019 Jan;24(1):25-37. doi: 10.1016/j.tplants.2018.10.003. Epub 2018 Nov 3.

Abstract

Plants grow and reproduce within a highly dynamic environment that can see abrupt changes in conditions, such as light intensity, temperature, humidity, or interactions with biotic agents. Recent studies revealed that plants can respond within seconds to some of these conditions, engaging many different metabolic and molecular networks, as well as rapidly altering their stomatal aperture. Some of these rapid responses were further shown to propagate throughout the entire plant via waves of reactive oxygen species (ROS) and Ca2+ that are possibly mediated through the plant vascular system. Here, we propose that the integration of these signals is mediated through pulses of gene expression that are coordinated throughout the plant in a systemic manner by the ROS/Ca+2 waves.

Keywords: physiology; rapid response; reactive oxygen; signal transduction; stomata; stress.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Environment
  • Plant Physiological Phenomena*
  • Plant Stomata / physiology
  • Plants / metabolism
  • Signal Transduction* / physiology
  • Stress, Physiological / physiology*