Background: Obesity is a growing global health problem. Since increased oxidative stress is one of the key pathological mechanisms underpinning overweight and strongly correlates with progression of obesity-related complications we hypothesized that C60 fullerene nanoparticles, due to their strong antioxidant capacity, could be the promising therapeutic agent in the treatment of this disease. Here we investigated whether the C60 fullerenes can alleviate diet-induced obesity (DIO) and metabolic impairments associated with it.
Methods: To determine the effect of C60 fullerenes on some nutritional and metabolic parameters, rats were fed either a normal diet (6.7% fat, 15.27 kJ·g-1) or a high-fat diet (38.8% fat, 28.71 kJ·g-1) for 70 days and were simultaneously treated per os with pristine C60 fullerene aqueous solution (C60FAS; 0.3 mg·kg-1 every other day) since the 28th day from the start of the experiment.
Results: Rats fed with high fat diet had significantly increased body mass index (BMI), levels of insulin, glucose, glycosilated hemoglobin (HbA1c) and serum pro-inflammatory cytokines compared with control rats fed with low-fat chow. C60 fullerenes normalized the metabolic parameters and partially reduced BMI in DIO animals. Pro-inflammatory cytokines (IL-1b, IL-12, INFγ) were also decreased in serum of DIO rats treated with C60 fullerenes while anti-inflammatory cytokines (IL-4, IL-10) were at the control levels. High fat diet caused the increased level of oxidative stress products, and this was accompanied by decreased activity both the superoxide dismutase and catalase, whereas the administration of C60 fullerenes markedly decreased level of oxidative stress and enhanced antioxidant enzyme activities.
Conclusion: These data indicate that water-soluble pristine C60 fullerenes reduce chronic inflammation, restore glucose homeostasis as well as positively affects on prooxidant-antioxidant homeostasis. C60 fullerenes could be represented as a promising therapeutic agent in the treatment of obesity and its related complications.