Understanding the complexity and regular function of the human brain is an unresolved challenge that hampers the identification of disease-contributing components and mechanisms of psychiatric disorders. It is accepted that the majority of psychiatric disorders result from a complex interaction of environmental and heritable factors, and efforts to determine, for example, genetic variants contributing to the pathophysiology of these diseases are becoming increasingly successful. We also continue to discover new molecules with unknown functions that might play a role in brain physiology. One such class of polymeric molecules is noncoding RNAs; though discovered years ago, they have only recently started to receive careful attention. Furthermore, recent technological advances in the field of molecular genetics and high-throughput sequencing have facilitated the discovery of a broad spectrum of RNAs that show no obvious coding potential but may provide additional layers of complexity and regulation to the molecular mechanisms underlying psychiatric disorders. Their exquisite enrichment and expression profiles in the brain may point to important functions of these RNAs in health and disease. This review will therefore aim to provide insight into the expression of noncoding RNAs in the brain, their function, and potential role in psychiatric disorders.