On the basis of TP53 mutations and standardized uptake values (SUVs) from 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET), we sought to enhance our knowledge of the biology underlying low progesterone receptor (PR) expression in estrogen receptor (ER)-positive/human epidermal growth factor receptor-2 (HER2)-negative tumors. This study included 272 patients surgically treated for ER-positive, HER2-negative breast cancer and who had undergone TP53 gene sequencing. Of these, 229 patients also underwent 18F-FDG PET or PET/CT. Mutational analysis of exons 5-9 of the TP53 gene was conducted using PCR amplification and direct sequencing. The SUVs were measured using 18F-FDG-PET scan images. Twenty-eight (10.3%) tumors had a somatic TP53 mutation. The TP53 mutation rate was significantly higher in low-PR tumors than in high-PR tumors (17.1% vs 7.9%, P = 0.039). Low-PR tumors had significantly higher median SUVs than high-PR tumors (P = 0.046). The multivariable analysis revealed that SUV and age remained independent variables associated with low PR expression. An adverse impact of low PR expression on recurrence-free survival was observed in the multivariable Cox regression hazard model. We provide clinical evidence that genetic alteration of the TP53 gene and dysregulated glucose metabolism partly involve low PR expression in ER-positive and HER2-negative breast cancer.
Keywords: SUV; TP53 mutation; breast cancer; progesterone receptor.