DNA damage repair alterations play a critical role in ovarian cancer tumorigenesis. Mechanistic drivers of the DNA damage response consequently present opportunities for therapeutic targeting. The chromatin-binding DEK oncoprotein functions in DNA double-strand break repair. We therefore sought to determine the role of DEK in epithelial ovarian cancer. DEK is overexpressed in both primary epithelial ovarian cancers and ovarian cancer cell lines. To assess the impact of DEK expression levels on cell growth, small interfering RNA and short hairpin RNA approaches were utilized. Decreasing DEK expression in ovarian cancer cell lines slows cell growth and induces apoptosis and DNA damage. The biologic effects of DEK depletion are enhanced with concurrent chemotherapy treatment. The in vitro effects of DEK knockdown are reproduced in vivo, as DEK depletion in a mouse xenograft model results in slower tumor growth and smaller tumors compared to tumors expressing DEK. These findings provide a compelling rationale to target the DEK oncoprotein and its pathways as a therapeutic strategy for treating epithelial ovarian cancer.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.