Here we demonstrate that aerosols of host directed therapies [HDT] administered during a chronic Mycobacterium tuberculosis (Mtb) infection have bactericidal effect. The pulmonary bacterial load of C57BL/6 mice chronically infected with Mtb was reduced by 1.7 and 0.6 log10CFU after two weeks of treatment via aerosol delivery with ST3-H2A2, [a selective peptide inhibitor of the STAT3 N-terminal domain] or IL10R1-7 [selective peptide inhibitor for the IL-10Ra] respectively and when compared to control mice treated with IL10R1-14 [peptide inhibitor used as negative control] or untreated mice infected with Mtb. Accordingly, when compared to control mice, the bactericidal capacity in mice was enhanced upon treatment with peptide inhibitors ST3-H2A2 and IL10R1-7 as evidenced by higher pulmonary activities of nitric oxide synthase, NADPH oxidase and lysozyme enzymes and decreased arginase enzyme activity. This therapy also modulated important checkpoints [Bcl2, Beclin-1, Atg 5, bax] in the apoptosis-autophagy pathways. Thus, even in the absence of antibiotics, targeting of the host pulmonary IL-10-STAT3 pathway can significantly reduce the Mtb bacilli load in the lungs, modulate the host own bactericidal capacity and apoptosis and autophagy pathways. Our approach here also allows targeting checkpoints of the lungs to determine their specific contribution in pulmonary immunity or pathogenesis.