Wearable textile based on silver plated knitted sensor for respiratory rate monitoring

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul:2018:2865-2868. doi: 10.1109/EMBC.2018.8512958.

Abstract

Wearable systems are gaining broad acceptance for monitoring physiological parameters in several medical applications. Among a number of approaches, smart textiles have attracted interest because they are comfortable and do not impair patients' movements. In this article, we aim at developing a smart textile for respiratory monitoring based on a piezoresistive sensing element. Firstly, the calibration curve of the system and its hysteresis have been investigated. Then, the proposed system has been assessed on 6 healthy subjects. The volunteers were invited to wear the system to monitor their breathing rate. The results of the calibration show a good mean sensitivity (i.e., approximately 0.11V·%-1); although the hysteresis is not negligible, the system can follow the cycles also at high rates (up to 36 cycle·min-1). The feasibility assessment on 6 volunteers (two trials for each one) shows that the proposed system can estimate with good accuracy the breathing rate. Indeed, the results obtained by the proposed system were compared with the ones collected with a spirometer, used as reference. Considering all the experiments, a mean percentage error was approximately 2%. In conclusion, the proposed system has several valuable features (e.g., the sensing element is lightweight, the sensitivity is high, and it is possible to develop comfortable smart textile); in addition, the promising performances considering both metrological properties and assessment on volunteers foster future tests focused on: i) the possibility of developing and system embedding several sensing elements, and ii) to develop a wireless acquisition system, to allow comfortable and long-term acquisition in both patients and during sport activities.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Monitoring, Physiologic
  • Respiratory Rate
  • Silver*
  • Textiles
  • Wearable Electronic Devices*

Substances

  • Silver