The structure/activity relationship of lipid A, a bioactive center of endotoxic lipopolysaccharides, in the activation of the clotting enzyme cascade of a horseshoe crab amoebocyte lysate (Limulus activity) and the complement system in human serum, was examined using synthetic lipids A and related compounds. Regarding Limulus activity, a newly developed colorimetric method, which utilizes a mixture of recombined clotting factors and a chromogenic substance, was much more sensitive for detecting changes in the chemical structure of test compounds than the conventional gelation method using the amoebocyte whole lysate. (beta 1-6)-D-Glucosamine disaccharide bisphosphates, which had neither 3-hydroxyacyl nor 3-acyloxyacyl groups, and acylglucosamine phosphates, which in structure correspond or are analogous to the non-reducing or reducing moieties of lipids A and biosynthetic disaccharide lipid A precursors showed only negligible activity in the colorimetric tests, but they exhibited a distinct though much weaker gelation activity than the parent disaccharide molecules. The assay results obtained by the colorimetric Limulus test correlate better with the pyrogenicity of the test synthetic compounds than those given by the gelation method, although the dependence of pyrogenicity on chemical structure is greater. The presence of 3-hydroxyacyl groups on the bisphosphorylated (beta 1-6)-D-glucosamine disaccharide backbone is the prerequisite for effective activation of the clotting enzyme cascade of horseshoe crab amoebocyte lysate, while the presence of an adequate number (one or two) of 3-acyloxyacyl groups on the disaccharide bisphosphate backbone is needed for full pyrogenicity. Complement activation, on the other hand, showed structural requirements quite different from those for the colorimetric Limulus activity and the pyrogenicity. The disaccharide compounds that had only non-hydroxylated acyl groups, acylated glucosamine phosphates that had the structure of the non-reducing portion of lipids A and biosynthetic disaccharide precursors, which were scarcely active in the colorimetric Limulus test, caused complement activation comparable to or sometimes stronger than that of the parent disaccharide molecules. Acylglucosamine phosphates, corresponding in structure to the reducing moiety of disaccharide compounds, however, showed little activity.