MYB transcription factors play important roles in the regulation of phenylpropanoid biosynthesis. However, the knowledge regarding the roles of CCA1-like MYBs in phenylpropanoid pathway is limited in plants. Previously, we identified 54 CCA1-like proteins in soybean. In the study, a CCA1-like MYB (GmMYB133) was functionally characterized as a positive regulator in isoflavonoid synthesis. GmMYB133 encodes a 330 aa protein featured with one CCA1 conserved motif. Further analysis indicated that the expression pattern of GmMYB133 was near-perfectly correlated with isoflavonoid accumulation as soybean embryos develop. GmMYB133 over-expression promoted the expression of two key isoflavonoid biosynthetic genes (GmCHS8 and GmIFS2) and increased total isoflavonoid content in hairy roots. Protein-protein interaction assays indicated that GmMYB133 might form hetero- and homodimers with an isoflavonoid regulator GmMYB176 and itself, respectively, while the subcellular localization of GmMYB133 can be altered by its interaction with 14-3-3 protein. These findings provided new insights into the functional roles of CCA1-like MYB proteins in the regulation of phenylpropanoid pathway, and will contribute to the future genetic engineering in the improvement of soybean seed quality.
Keywords: CCA1-like protein; GmMYB133; Isoflavonoids; Soybean.
Copyright © 2018 Elsevier Inc. All rights reserved.