Design, synthesis and in vitro evaluation of stilbene derivatives as novel LSD1 inhibitors for AML therapy

Bioorg Med Chem. 2018 Dec 15;26(23-24):6000-6014. doi: 10.1016/j.bmc.2018.10.037. Epub 2018 Oct 29.

Abstract

LSD1 is implicated in a number of malignancies and has emerged as an exciting target. As part of our sustained efforts to develop novel reversible LSD1 inhibitors for epigenetic therapy of cancers, in this study, we reported a series of stilbene derivatives and evaluated their LSD1 inhibitory activities, obtaining several compounds as potent LSD1 inhibitors with IC50 values in submicromolar range. Enzyme kinetics studies and SPR assay suggested that compound 8c, the most active LSD1 inhibitor (IC50 = 283 nM), potently inhibited LSD1 in a reversible and FAD competitive manner. Consistent with the kinetics data, molecular docking showed that compound 8c can be well docked into the FAD binding site of LSD1. Flow cytometry analysis showed that compound 8c was capable of up-regulating the expression of the surrogate cellular biomarker CD86 in THP-1 human leukemia cells, suggesting the ability to block LSD1 activity in cells. Compound 8c showed good inhibition against THP-1 and MOLM-13 cells with IC50 values of 5.76 and 8.34 μM, respectively. Moreover, compound 8c significantly inhibited colony formation of THP-1 cells dose dependently.

Keywords: AML; Lysine-specific demethylase 1; Stilbene; Synthesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Dose-Response Relationship, Drug
  • Drug Design*
  • Drug Screening Assays, Antitumor
  • Enzyme Inhibitors / chemical synthesis
  • Enzyme Inhibitors / chemistry
  • Enzyme Inhibitors / pharmacology*
  • Histone Demethylases / antagonists & inhibitors*
  • Histone Demethylases / metabolism
  • Humans
  • Leukemia, Myeloid, Acute / drug therapy*
  • Leukemia, Myeloid, Acute / metabolism
  • Leukemia, Myeloid, Acute / pathology
  • Molecular Docking Simulation
  • Molecular Structure
  • Stilbenes / chemical synthesis
  • Stilbenes / chemistry
  • Stilbenes / pharmacology*
  • Structure-Activity Relationship
  • THP-1 Cells

Substances

  • Antineoplastic Agents
  • Enzyme Inhibitors
  • Stilbenes
  • Histone Demethylases
  • KDM1A protein, human