Precision medicine is the treatment of patients with therapy targeted to their specific pathophysiology. This lofty ideal currently has limited application in clinical practice. However, new technological advances in epilepsy models and genomics suggest that the precision medicine revolution is closer than ever before. We are gaining an improved understanding of the true complexity underlying the pathophysiology of genetic epilepsies and the sources of phenotypic variation that continue to frustrate efforts at genotype-phenotype correlation. Conventional experimental models of epilepsy, such as mouse models and heterologous expression systems, have provided many of the advances in our understanding of genetic epilepsies, but fail to account for some of these complexities. Novel high-throughput models of epilepsy such as zebrafish and induced pluripotent stems cells can be combined with CRISPR-Cas9 gene editing techniques to explore the pathogenesis of a specific gene change and rapidly screen drug libraries for potential therapeutics. The knowledge gained from these models must be combined with thorough natural history studies to determine appropriate patient populations for pragmatic clinical trials. Advances in the 'omics', genetic epilepsy models and deep-phenotyping techniques have revolutionary translational research potential that can bring precision medicine to the forefront of clinical practice in the coming decade.