Background: Dried plasmas can overcome logistical barriers that prevent fresh frozen plasma (FFP) usage in acute resuscitation, but processing of these products can detrimentally alter the composition. Spray-dried plasma (SpDP) from single units is deficient in high-molecular-weight multimers of von Willebrand factor (vWF), a critical facilitator of platelet adhesion and thrombus formation. We hypothesized that converting high-molecular-weight multimers to smaller-molecular-weight multimers would retain vWF's capacity to mediate platelet adhesion.
Study design and methods: SpDP obtained from untreated FFP was reconstituted with glycine-hydrochloric acid (HCl) and glycine (20 mM:50 mM) or pretreated with glycine-HCl (20 mM) or glycine-glycine-HCl (20 mM:50 mM) and reconstituted with water. In vitro hemostatic potential of SpDPs versus FFP or FFP spiked with 70 mM of glycine was evaluated, leading to a more detailed in vitro study of glycine-HCl-glycine (20 mM:50 mM) pretreated SpDP. Plasmas were combined with RBCs and platelets to observe global coagulation response.
Results: While vWF-ristocetin cofactor activity is significantly decreased (-41.13%; p < .0001) in SpDP, a model of vWF-mediated platelet adhesion to collagen under flow showed enhanced function (+13%; p < .01). Fewer microparticles, particularly of platelet origin, were observed in SpDP versus FFP (p < .0001). Small but significant differences in thromboelastography results were observed, although SpDP and FFP were within normal ranges.
Conclusion: Comparable coagulability was observed in FFP and SpDP. The apparent paradox between vWF-ristocetin cofactor assay and vWF-mediated platelet adhesion may be explained by the increase in smaller multimers of vWF in SpDP, producing different outcomes in these assays.
© 2018 AABB.