Here, 10 drought-induced 19 (Di19) proteins from Phyllostachys edulis were analyzed and an important stress-related candidate gene (PeDi19-4) was isolated based on analysis of phylogenetic relationships and expression profiles. PeDi19-4 is a nuclear localization protein that can bind the conserved TACA(A/G)T sequence, as determined using enzyme-linked immunosorbent assay (EMSA). PeDi19-4 has no transcriptional activity in yeast but functions as a transcription activator in plants. Overexpression of PeDi19-4 in rice and Arabidopsis thaliana enhanced drought and salt tolerance as determined through phenotypic analysis and the use of stress-associated physiological indicators. PeDi19-4 transgenic plants showed increased sensitivity to ABA during seed germination and early seedling growth. Additionally, transgenic rice accumulated more ABA than wild-type plants under drought and salt stress conditions. Moreover, the stomata of PeDi19-4-overexpressing plants changed significantly with ABA treatment. RNA sequencing revealed that PeDi19-4 regulated the expression of a wide spectrum of stress-/ABA-responsive differentially expressed genes. The stress-responsive genes (OsZFP252 and OsNAC6) and ABA-responsive genes (OsBZ8 and OsbZIP23) were direct targets of PeDi19-4. Our research indicated that PeDi19-4 enhanced drought and salt tolerance in plants via the ABA-dependent signaling pathway.
Keywords: ABA; Drought and salt stresses; Moso bamboo; PeDi19-4; Target genes; Transcription activator.
� The Author(s) 2018. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: [email protected].