Bone augmentation therapy is used in dental implantation. While techniques to induce bone formation are generally successful, the maintenance of bone mass is more difficult. Therefore, it is important to understand the mechanisms that regulate this process. Insulin-like growth factor-1 (IGF-1) is one of the most abundant growth factors that regulate bone mass, promote osteoblast differentiation, and accelerate bone formation. The activity of IGF-1 is regulated by IGF-binding proteins (IGFBPs). IGFBP-3 forms a ternary complex with IGF-1, extending its half-life in the circulating system. Therefore, IGFBP-3 acts as a stabilizer and transporter of IGF-1. Recent studies reported new IGF-1-independent functions of IGFBP-3 related with bone metabolism. In this study, we investigated the function of IGFBP-3 in osteoblast differentiation. Our results showed that IGFBP-3 decreases the expression of osteoblast differentiation markers, whose expression is enhanced by bone morphogenetic protein-2 (BMP-2). IGFBP-3 also reduced BMP-2 effect on ALP activity and mineral nodule formation. In addition, IGFBP-3 suppresses the activity of the Smad Binding Element (SBE) reporter, induced by BMP-2 signaling. These results suggest that IGFBP-3 inhibits osteoblast differentiation through the BMP-2 signal pathway, and that IGFBP-3 might play a role in bone mass maintenance in an IGF-1-dependent and -independent manner.
Keywords: Bone marrow stromal cells; Bone morphogenesis protein-2 (BMP-2); Insulin-like growth factor (IGF-1); Insulin-like growth factor binding protein-3 (IGFBP-3); Osteoblast differentiation; Osteogenesis.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.