The yeast Candida albicans colonizes several sites in the human body and responds to metabolic signals in commensal and pathogenic states. The yeast-to-hyphae transition correlates with virulence, but how metabolic status is integrated with this transition is incompletely understood. We used the putative mitochondrial fission inhibitor mdivi-1 to probe the crosstalk between hyphal signaling and metabolism. Mdivi-1 repressed C. albicans hyphal morphogenesis, but the mechanism was independent of its presumed target, the mitochondrial fission GTPase Dnm1. Instead, mdivi-1 triggered extensive metabolic reprogramming, consistent with metabolic stress, and reduced endogenous nitric oxide (NO) levels. Limiting endogenous NO stabilized the transcriptional repressor Nrg1 and inhibited the yeast-to-hyphae transition. We establish a role for endogenous NO signaling in C. albicans hyphal morphogenesis and suggest that NO regulates a metabolic checkpoint for hyphal growth. Furthermore, identifying NO signaling as an mdivi-1 target could inform its therapeutic applications in human diseases.
Keywords: Candida albicans; fungal pathogenesis; hyphae; mdivi-1; metabolism; mitochondria; morphogenesis; mycology; nitric oxide.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.