Adipogenesis involved in hypertrophy and hyperplasia of adipocytes is responsible for expanding the mass of adipose tissues in obese individuals. Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα) are two principal transcription factors induced by delicate signaling pathways, including signal transducer and activator of transcription 5 (STAT5), in adipogenesis. Here, we demonstrated a novel role of ginkgetin, a biflavone from Ginkgo biloba leaves, as a STAT5 inhibitor that blocks the differentiation of preadipocytes into adipocytes. During the differentiation of 3T3-L1 cells, ginkgetin treatment during the first 2 days markedly inhibited the formation of lipid-bearing adipocytes. PPARγ and C/EBPα expression was decreased in 3T3-L1 cells during adipogenesis following ginkgetin treatment, whereas no change was observed in C/EBPβ or C/EBPδ expression. Inhibition of PPARγ and C/EBPα expression by ginkgetin occurred through the prevention of STAT5 activation during the initiation phase of adipogenesis. In addition, ginkgetin-mediated the inhibition of adipogenesis was recapitulated in the differentiation of primary preadipocytes. Lastly, we confirmed the inhibitory effects of ginkgetin on the hypertrophy of white adipose tissues from high-fat diet-fed mice. These results indicate that ginkgetin is a potential anti-adipogenesis and anti-obesity drug.
Keywords: Adipogenesis; CCAAT/enhancer-binding protein α (C/EBPα); Ginkgetin; Obesity; Peroxisome proliferator-activated receptor γ(PPARγ); Signal transducer and activator of transcription 5 (STAT5).
Copyright © 2018 Elsevier Ltd. All rights reserved.