Count outcomes with excessive zeros are common in behavioral and social studies, and zero-inflated count models such as zero-inflated Poisson (ZIP) and zero-inflated Negative Binomial (ZINB) can be applied when such zero-inflated count data are used as response variable. However, when the zero-inflated count data are used as predictors, ignoring the difference of structural and random zeros can result in biased estimates. In this paper, a generalized estimating equation (GEE)-type mixture model is proposed to jointly model the response of interest and the zero-inflated count predictors. Simulation studies show that the proposed method performs well for practical settings and is more robust for model misspecification than the likelihood-based approach. A case study is also provided for illustration.
Keywords: Generalized estimating equations; mixture model; structural zeros; zero-inflated Poisson; zero-inflated explanatory variables.