Microstructure, local electronic structure and optical behaviour of zinc ferrite thin films on glass substrate

R Soc Open Sci. 2018 Oct 17;5(10):181330. doi: 10.1098/rsos.181330. eCollection 2018 Oct.

Abstract

Zinc ferrite thin films were deposited using a radio-frequency-sputtering method on glass substrates. As-deposited films were annealed at 200°C for 1, 3 and 5 h, respectively. X-ray diffraction studies revealed the amorphous nature of as-grown and annealed films. Thickness of as-deposited film is 96 nm as determined from Rutherford backscattering spectroscopy which remains almost invariant with annealing. Transmission electron microscopic investigations envisaged a low degree of crystalline order in as-deposited and annealed films. Thicknesses estimated from these measurements were almost 62 nm. Roughness values of these films were almost 1-2 nm as determined from atomic force microscopy. X-ray reflectivity measurements further support the results obtained from TEM and AFM. Near-edge X-ray absorption fine structure measurements envisaged 3+ and 2+ valence states of Fe and Zn ions in these films. UV-Vis spectra of these films were characterized by a sharp absorption in the UV region. All films exhibited almost the same value of optical band gap within experimental error, which is close to 2.86 eV.

Keywords: local electronic structure; optical studies; thin films; zinc ferrite.

Associated data

  • figshare/10.6084/m9.figshare.c.4248449