Our objective was to investigate direct voxel-wise relationship between dose and early MR biomarker changes both within and in the high-dose region surrounding brain metastases following stereotactic radiosurgery (SRS). Specifically, we examined the apparent diffusion coefficient (ADC) from diffusion-weighted imaging and the contrast transfer coefficient (Ktrans) and volume of extracellular extravascular space (ve) derived from dynamic contrast-enhanced (DCE) MRI data. We investigated 29 brain metastases in 18 patients using 3 T MRI to collect imaging data at day 0, day 3 and day 20 following SRS. The ADC maps were generated by the scanner and Ktrans and ve maps were generated using in-house software for dynamic tracer-kinetic analysis. To enable spatially-correlated voxel-wise analysis, we developed a registration pipeline to register all ADC, Ktrans and ve maps to the planning MRI scan. To interrogate longitudinal changes, we computed absolute ΔADC, ΔKtrans and Δve for day 3 and 20 post-SRS relative to day 0. We performed a Kruskall-Wallice test on each biomarker between time points and investigated dose correlations within the gross tumour volume (GTV) and surrounding high dose region > 12 Gy via Spearman's rho. Only ve exhibited significant differences between day 0 and 20 (p < 0.005) and day 3 and 20 (p < 0.05) within the GTV following SRS. Strongest dose correlations were observed for ADC within the GTV (rho = 0.17 to 0.20) and weak correlations were observed for ADC and Ktrans in the surrounding > 12 Gy region. Both ΔKtrans and Δve showed a trend with dose at day 20 within the GTV and > 12 Gy region (rho = -0.04 to -0.16). Weak dose-related decreases in Ktrans and ve within the GTV and high dose region at day 20 most likely reflect underlying vascular responses to radiation. Our study also provides a voxel-wise analysis schema for future MR biomarker studies with the goal of elucidating surrogates for radionecrosis.