Objective: Novel biomarkers are needed to better predict coronary artery calcification (CAC), a marker of subclinical atherosclerosis, and diabetic kidney disease (DKD) in type 1 diabetes. We evaluated the associations between serum uromodulin (SUMOD [a biomarker associated with anti-inflammatory and renal protective properties]), CAC progression, and DKD development over 12 years.
Research design and methods: Participants (n = 527, 53% females) in the Coronary Artery Calcification in Type 1 Diabetes (CACTI) study were examined during 2002-2004, at a mean age of 39.6 ± 9.0 years and a median duration of diabetes of 24.8 years. Urine albumin-to-creatinine ratio (ACR) and estimated glomerular filtration rate (eGFR) determined by the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) creatinine equation were measured at baseline and after a mean follow-up period of 12.1 ± 1.5 years. Elevated albumin excretion was defined as ACR ≥30 mg/g, rapid GFR decline (>3 mL/min/1.73 m2/year), and impaired GFR as eGFR <60 mL/min/1.73 m2. SUMOD was measured on stored baseline plasma samples (Meso Scale Discovery). CAC was measured using electron beam computed tomography. CAC progression was defined as a change in the square root-transformed CAC volume of ≥2.5.
Results: Higher baseline SUMOD level conferred lower odds of CAC progression (odds ratio 0.68; 95% CI 0.48-0.97), incident elevated albumin excretion (0.37; 0.16-0.86), rapid GFR decline (0.56; 0.35-0.91), and impaired GFR (0.44; 0.24-0.83) per 1 SD increase in SUMOD (68.44 ng/mL) after adjustment for baseline age, sex, systolic blood pressure, LDL cholesterol, and albuminuria/GFR. The addition of SUMOD to models with traditional risk factors also significantly improved the prediction performance for CAC progression and incident DKD.
Conclusions: Higher baseline SUMOD level predicted lower odds of both CAC progression and incident DKD over 12 years in adults with type 1 diabetes.
© 2018 by the American Diabetes Association.