DNA occupies significant roles in life processes, which include encoding the sequences of proteins and accurately transferring genetic information from generation to generation. Recent discoveries have demonstrated that a variety of biological functions are correlated with DNA's conformational transitions. The non-B form has attained great attention among the diverse forms of DNA over the past several years. The main reason for this is that a large number of studies have shown that the non-B form of DNA is associated with gross deletions, inversions, duplications, translocations as well as simple repeating sequences, which therefore causes human diseases. Consequently, the conformational transition of DNA between the B-form and the non-B form is important for biology. Conventional fluorescence probes based on the conformational transitions of DNA usually need a fluorophore and a quencher group, which suffers from the complex design of the structure and tedious synthetic procedures. Moreover, conventional fluorescence probes are subject to the aggregation-caused quenching (ACQ) effect, which limits their application toward imaging and analyte detection. Fluorogens exhibiting aggregation-induced emission (AIE) have attracted tremendous attention over the past decade. By taking advantage of this unique behavior, plenty of fluorescent switch-on probes without the incorporation of fluorescent quenchers/fluorophore pairs have been widely developed as biosensors for imaging a variety of analytes. Herein, the recent progress in bioanalytical applications on the basis of aggregation-induced emission luminogens (AIEgens)/nucleic acid nanostructures are presented and discussed.
Keywords: DNA; aggregated-induced emission; biosensors; conformation analysis; fluorescence.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.