A cDNA clone encoding the entire transacylase (E2b) precursor of the bovine branched-chain alpha-keto acid dehydrogenase complex has been constructed from two overlapping incomplete cDNA clones which were isolated from a lambda ZAP library prepared from bovine liver poly(A)+ RNA. Nucleotide sequencing indicates that this bovine E2b cDNA insert (bE2-11) is 2701 base pairs in length with an open reading frame of 1446 base pairs. The bE2-11 cDNA insert encodes a leader peptide of 61 residues and a mature E2b polypeptide of 421 amino acid residues with a calculated monomeric molecular mass of 46,518 daltons. The molecular mass of the native E2b component isolated from bovine liver is 1,110,000 daltons as determined by sedimentation equilibrium. This value establishes the 24-subunit octahedral model for the quaternary structure of bovine E2b. The amino-terminal sequences of two tryptic fragments (A and B) of the E2b protein have been determined. Fragment A comprises residues 175 to 421 of the E2b protein and is the inner E2 core domain which contains the transacylase active site. Fragment B, produced by further tryptic cleavage of fragment, comprises residues 205 to 421, but does not have transacylase activity. Both fragments A and B confer the highly assembled 24-mer structure. The primary structure of the inner E2 core domain of bovine E2b (fragment A) is very similar to those of three other E2 proteins (human E2p, Escherichia coli E2p, and E. coli E2k). These similarities suggest that these E2 proteins are structurally and evolutionarily related.