ST131 fimH22 Escherichia coli isolate with a blaCMY-2/IncI1/ST12 plasmid obtained from a patient with bloodstream infection: highly similar to E. coli isolates of broiler origin

J Antimicrob Chemother. 2019 Mar 1;74(3):557-560. doi: 10.1093/jac/dky484.

Abstract

Objectives: This study compares the genome of an ST131 CMY-2-producing Escherichia coli isolate from a Danish patient with other ST131 CMY-2-producing E. coli isolates of both human and animal origin.

Methods: In 2016, an ST131 CMY-2-producing E. coli isolate (ESBL20160056) was obtained from a patient with a bloodstream infection. The genome of the ESBL20160056 isolate was compared with genomes from six ST131 CMY-2-producing E. coli isolates obtained from broiler meat imported to Denmark, 15 ST131 CMY-2-producing E. coli isolates obtained from Enterobase (http://enterobase.warwick.ac.uk) and two ST131 CMY-2-producing E. coli from European collaborators. The plasmid from ESBL20160056 was sequenced using a MinION Mk1B (Oxford Nanopore Technologies).

Results: The E. coli isolate from the Danish patient clustered together with 13 other fimH22 ST131 CMY-2-producing E. coli isolates in a distinct clade. The clade consisted of genomes from six E. coli isolates from humans collected in Denmark, Spain, Cambodia and the USA, six E. coli isolates obtained from broiler meat samples imported to Denmark from France, the Netherlands and Germany, and two E. coli isolates obtained from broilers in Belgium and Luxembourg. The 101.5 kb plasmid with blaCMY-2 from ESBL20160056 had an IncI1 replicon and belonged to ST12 using the plasmid MLST scheme. In total, 10 of the 14 ST131 E. coli isolates belonging to the fimH22 clade carried an IncI1 ST12 plasmid with blaCMY-2.

Conclusions: From our data, it seems plausible that the ST131 fimH22 CMY-2-producing E. coli isolate obtained from the Danish patient could have a zoonotic broiler origin.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Animals
  • Bacteremia / microbiology*
  • Chickens
  • Denmark
  • Escherichia coli / classification
  • Escherichia coli / enzymology*
  • Escherichia coli / genetics
  • Escherichia coli / isolation & purification
  • Escherichia coli Infections / microbiology*
  • Genome, Bacterial*
  • Humans
  • Meat / microbiology
  • Plasmids / analysis*
  • Sequence Homology
  • beta-Lactamases / genetics*
  • beta-Lactamases / metabolism

Substances

  • beta-lactamase CMY-2
  • beta-Lactamases