Uterine endometrial carcinoma is one of the common cancers in females. Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are a small subpopulation of cancer cells that are tumorigenic and are resistant to treatments, thus they are focused as treatment targets. However, the heterogeneity of CSCs/CICs is still elusive, and we therefore analyzed CSCs/CICs at the clonal level. We previously established sphere-cultured CSCs/CICs from primary human uterine endometrial carcinoma, and we isolated several clones from CSCs/CICs in this study. Interestingly, we established two types of clones based on the growth pattern. The clones were termed sphere clones (S clones) and leukemia-like clones (LL clones). Functional analysis revealed that S clones are resistant to chemotherapy, whereas LL clones are sensitive to chemotherapy. On the other hand, S clones are less tumorigenic, while LL clones are highly tumorigenic. Transcriptome analysis using serial analysis of gene expression sequencing (SAGE-Seq) revealed distinctive gene expression profiles in S clone cells and LL clone cells. The results indicate that CSCs/CICs are composed of functionally heterogenic subpopulations including highly tumorigenic clones and treatment-resistant clones and that the characteristics of CSCs/CICs might be determined by the characteristics of different clones that compose CSCs/CICs.
Keywords: Cancer stem cell; Chemo-resistance; Endometrial carcinoma; SAGE-Seq; Tumorigenicity.
Copyright © 2018. Published by Elsevier Inc.