Purely organic phosphors have important applications in imaging, sensing, informatics and illumination. Methoxy-substituted difluoroboron dibenzoylmethane (BF2dbm) complexes exhibit intense fluorescence with an almost unity quantum yield. Here we show that by simply introducing an sp3 oxygen-bridged methoxylphenyl group as a pendant to BF2dbm, the boron complex exhibits a triplet quantum yield of 0.16, a more than 100-fold increase compared to that of BF2dbm.