Purpose: To compare in vivo lung morphometry parameters derived from theoretical gas diffusion models, the cylinder model and stretched exponential model, in a range of acinar microstructural length scales encountered in healthy and diseased lungs with 3 He and 129 Xe diffusion-weighted MRI.
Methods: Three-dimensional multiple b-value 3 He and 129 Xe diffusion-weighted MRI was acquired with compressed sensing at 1.5 T from 51 and 31 subjects, respectively, including healthy volunteers, ex-smokers, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease patients. For each subject, the stretched exponential model-derived mean diffusive length scale (LmD ) was calculated from the diffusion signal decay, and was compared with the cylinder model-derived mean chord length (Lm) and mean alveolar diameter (LAlv ) in order to determine the relationships among the different lung morphometry parameters.
Results: For both 3 He and 129 Xe diffusion-weighted MRI, the mean global LmD value was significantly related (P < .001) to Lm in a nonlinear power relationship, whereas the LAlv demonstrated excellent linear correlation (P < .001) with LmD . A mean bias of +1.0% and 2.6% toward LmD was obtained for Bland-Altman analyses of 3 He and 129 Xe LmD and LAlv values, suggesting that the two morphometric parameters are equivalent measures of mean acinar dimensions.
Conclusion: Within the experimental range of parameters considered here for both 3 He and 129 Xe, the stretched exponential model-derived LmD is related nonlinearly to cylinder model-derived Lm, and demonstrates excellent agreement with the cylinder model-derived LAlv .
Keywords: cylinder model; hyperpolarized129Xe; hyperpolarized3He; lung morphometry; stretched exponential model.
© 2018 International Society for Magnetic Resonance in Medicine.