In proton therapy, the lateral fall-off is often used to spare critical organs. It is therefore crucial to improve the penumbra for proton pencil beam scanning. However, previous work has shown that collimation may not be necessary for depths of >15 cm in water. As such, in this work we investigate the effectiveness of a thin multi leaf collimator (just thick enough to completely stop protons with ranges of <15 cm in water) for energy layer specific collimation in patient geometries, when applied in combination with both grid and contour scanned PBS proton therapy. For this, an analytical model of collimated beam shapes, based solely on data available in the treatment planning system, has been included in the optimization, with the resulting optimised plans then being recalculated using Monte Carlo in order to most accurately simulate the full physics effects of the collimator. For grid based scanning, energy specific collimation has been found to reduce the V30 outside the PTV by 19.8% for an example patient when compared to the same pencil beam placement without collimation. V30 could be even reduced by a further 5.6% when combining collimation and contour scanning. In addition, mixed plans, consisting of contour scanning for deep fields (max range >15 cm WER) and collimated contour scanning for superficial fields (<15 cm), have been created for four patients, by which V30 could be reduced by 0.8% to 8.0% and the mean dose to the brain stem by 1.5% to 3.3%. Target dose homogeneity however is not substantially different when compared to the best un-collimated scenario. In conclusion, we demonstrate the potential advantages of a thin, multi leaf collimator in combination with contour scanning for energy layer specific collimation in PBS proton therapy.