Biomimetic surface modification of discoidal polymeric particles

Nanomedicine. 2019 Feb:16:79-87. doi: 10.1016/j.nano.2018.11.011. Epub 2018 Dec 7.

Abstract

The rationale for the design of drug delivery nanoparticles is traditionally based on co-solvent self-assembly following bottom-up approaches or in combination with top-down approaches leading to tailored physiochemical properties to regulate biological responses. However, the optimal design and control of material properties to achieve specific biological responses remain the central challenge in drug delivery research. Considering this goal, we herein designed discoidal polymeric particles (DPPs) whose surfaces are re-engineered with isolated red blood cell (RBC) membranes to tailor their pharmacokinetics. The RBC membrane-coated DPPs (RBC-DPPs) were found to be biocompatible in cell-based in vitro experiments and exhibited extended blood circulation half-life. They also demonstrated unique kinetics at later time points in a mouse model compared to that of bare DPPs. Our results suggested that the incorporation of biomimicry would enable the biomimetic particles to cooperate with systems in the body such as cells and biomolecules to achieve specific biomedical goals.

Keywords: Biomimetic; Discoidal polymeric particle; Drug delivery; Red blood cell.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomimetics / methods*
  • Drug Delivery Systems / methods
  • Erythrocyte Membrane / chemistry
  • Erythrocytes
  • Female
  • Macrophages
  • Mice
  • Mice, Nude
  • Polymers / chemistry*

Substances

  • Polymers