Assessment of Complement Cascade Components in Patients With Bipolar Disorder

Front Psychiatry. 2018 Nov 27:9:614. doi: 10.3389/fpsyt.2018.00614. eCollection 2018.

Abstract

Introduction: The immune system is undoubtedly involved in the pathogenesis of various psychiatric disorders, such as schizophrenia, bipolar disorder, or depression. Although its role is not fully understood, it appears that this area of research can help to understand the etiology of mental illness. One of the components of the human immune system is the complement system, which forms a part of the innate immune response. Physiologically, except for its essential protective role, it is a vital element in the regeneration processes, including neurogenesis. To date, few studies have tried to clarify the role of the complement cascade in mental disorders. Materials and Methods: We evaluated concentrations of C3a, C5a, and C5b-9 complement cascade components in the peripheral blood of 30 patients suffering from bipolar disorder (BD) for at least 10 years, in euthymia, who were not treated with lithium salts. In addition, we divided our study sample into BD type I (BD-I, 22 persons), and BD type II (BD-II, 8 patients). The control group consisted of 30 healthy volunteers matched for age, sex, BMI, and smoking habits. Results: Compared to healthy controls, BD patients had elevated concentrations of all the investigated components. Furthermore, in patients with BD-II, we observed higher concentrations of C5b-9 as compared to patients with BD-I. However, there was a significant effect of BD diagnosis only on the levels of C3a and C5a but not on the level of C5b-9 after adjustment for potential confounding factors. Conclusions: Increased concentrations of components C3a and C5a of the complement system in the investigated group as compared to healthy controls suggest involvement of the complement cascade in the pathogenesis of BD, and provides further evidence of immune system dysregulation in BD patients.

Keywords: C3a; C5a; C5b-9; bipolar disorder; complement system.