Reactive oxygen species regulate activity-dependent neuronal plasticity in Drosophila

Elife. 2018 Dec 17:7:e39393. doi: 10.7554/eLife.39393.

Abstract

Reactive oxygen species (ROS) have been extensively studied as damaging agents associated with ageing and neurodegenerative conditions. Their role in the nervous system under non-pathological conditions has remained poorly understood. Working with the Drosophila larval locomotor network, we show that in neurons ROS act as obligate signals required for neuronal activity-dependent structural plasticity, of both pre- and postsynaptic terminals. ROS signaling is also necessary for maintaining evoked synaptic transmission at the neuromuscular junction, and for activity-regulated homeostatic adjustment of motor network output, as measured by larval crawling behavior. We identified the highly conserved Parkinson's disease-linked protein DJ-1β as a redox sensor in neurons where it regulates structural plasticity, in part via modulation of the PTEN-PI3Kinase pathway. This study provides a new conceptual framework of neuronal ROS as second messengers required for neuronal plasticity and for network tuning, whose dysregulation in the ageing brain and under neurodegenerative conditions may contribute to synaptic dysfunction.

Keywords: D. melanogaster; DJ-1; Drosophila; ROS (reactive oxygen species); neuron; neuroscience; plasticity; synapse.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Genetically Modified
  • Drosophila Proteins / metabolism
  • Drosophila melanogaster / genetics
  • Drosophila melanogaster / metabolism*
  • Larva / genetics
  • Larva / metabolism
  • Microscopy, Electron, Transmission
  • Motor Neurons / metabolism*
  • Nerve Tissue Proteins / metabolism
  • Neuromuscular Junction / metabolism
  • Neuromuscular Junction / ultrastructure
  • Neuronal Plasticity*
  • PTEN Phosphohydrolase / metabolism
  • Phosphatidylinositol 3-Kinases / metabolism
  • Presynaptic Terminals / metabolism
  • Presynaptic Terminals / ultrastructure
  • Protein Deglycase DJ-1
  • Reactive Oxygen Species / metabolism*
  • Signal Transduction
  • Synaptic Transmission

Substances

  • Drosophila Proteins
  • Nerve Tissue Proteins
  • Reactive Oxygen Species
  • DJ-1beta protein, Drosophila
  • Protein Deglycase DJ-1
  • PTEN Phosphohydrolase