Anthrax, caused by Bacillus anthracis, is a non-contagious infectious disease that affects a wide range of animal species (primarily ruminants) including humans. Due to the often-fatal outcome in humans, quick administration of definitely effective antimicrobials is crucial either as prophylaxis or as a clinical case therapy. In this study, 110 B. anthracis strains, temporally, geographically, and genetically different, isolated during anthrax outbreaks in Italy from 1984 to 2017, were screened using a broth microdilution method to determine their susceptibility to 16 clinically relevant antimicrobial agents. The strains were isolated from various matrices (human, animal, and environmental samples) and were representative of thirty distinct genotypes previously identified by 15-loci multiple-locus variable-number of tandem repeats analysis. The antimicrobials tested were gentamicin, ceftriaxone, streptomycin, penicillin G, clindamycin, chloramphenicol, vancomycin, linezolid, cefotaxime, tetracycline, erythromycin, rifampin, amoxicillin, ciprofloxacin, doxycycline, and trimethoprim. All isolates were susceptible to most of the tested antimicrobials, with the exception of trimethoprim for which all of them showed high minimal inhibitory concentration values. An intermediate level of susceptibility was recorded for ceftriaxone and cefotaxime. Although the Centers for Disease Control and Prevention recommend the use of doxycycline, ciprofloxacin, penicillin G, and amoxicillin for treatment of human cases and for post-exposure prophylaxis to anthrax spores, this study shows a high degree of in vitro susceptibility of B. anthracis to many other antimicrobials, suggesting the possibility of an alternative choice for prophylaxis and therapy.
Keywords: Anthrax treatment; Antimicrobial susceptibility testing; Bacillus anthracis; Minimum inhibitory concentration.