The production of dopaminergic (DA) neurons from stem cells holds a great promise for future clinical treatment of neurodegenerative diseases, such as Parkinson's disease (PD). Olfactory ecto-mesenchymal stem cells (OE-MSCs) derived from the adult human olfactory mucosa can be easily isolated and expanded in culture while maintaining their immense plasticity. In addition to reduced ethical concerns, OE-MSCs could be transplanted across allogeneic barriers, making them desirable stem cells for clinical applications. The goal of this study was to define the potentiality of human olfactory mucosa-derived MSCs aimed at differentiation into DA neuron-like cells. OE-MSCs were induced to differentiate to DA neuron-like cells in vitro by using sonic hedgehog (SHH), fibroblast growth factor 8 (FGF8), basic fibroblast growth factor (bFGF), Glial cell line-derived neurotrophic factor (GDNF) and brain derived neurotrophic factor (BDNF). Then the differentiated neurons were characterized for expression of DA neuron markers by Real-time PCR, immunocytochemistry and flow cytometry. Our findings showed that differentiated OE-MSCs could significantly express DA neuron markers at mRNA and protein levels along with dopamine release 12 days post-differentiation. These results support the viability and feasibility of using OE-MSCs as a source of in vitro generated DA neuron-like cells for treatment of DA disorders namely PD.
Keywords: Dopamine producing cells; Dopaminergic neuron-like cells; Human olfactory mucosa; In vitro differentiation; Olfactory ecto-mesenchymal stem cells; Parkinson’s disease.
Copyright © 2018 Elsevier B.V. All rights reserved.