Background Statins reduce aneurysm growth in mouse models of Marfan syndrome, although the mechanism is unknown. In addition to reducing cholesterol, statins block farnesylation and geranylgeranylation, which participate in membrane-bound G-protein signaling, including Ras. We dissected the prenylation pathway to define the effect of statins on aneurysm reduction. Methods and Results Fbn1C1039G/+ mice were treated with (1) pravastatin (HMG-CoA [3-hydroxy-3-methylglutaryl coenzyme A] reductase inhibitor), (2) manumycin A ( MA ; FPT inhibitor), (3) perillyl alcohol ( GGPT 1 and -2 inhibitor), or (4) vehicle control from age 4 to 8 weeks and euthanized at 12 weeks. Histological characterization was performed. Protein analysis was completed on aortic specimens to measure ERK (extracellular signal-regulated kinase) signaling. In vitro Fbn1C1039G/+ aortic smooth muscle cells were utilized to measure Ras-dependent ERK signaling and MMP (matrix metalloproteinase) activity. Pravastatin and MA significantly reduced aneurysm growth compared with vehicle control (n=8 per group). In contrast, PA did not significantly decrease aneurysm size. Histology illustrated reduced elastin breakdown in MA -treated mice compared with vehicle control (n=5 per group). Although elevated in control Marfan mice, both phosphorylated c-Raf and phosphorylated ERK 1/2 were significantly reduced in MA -treated mice (4-5 per group). In vitro smooth muscle cell studies confirmed phosphorylated cR af and phosphorylated ERK 1/2 signaling was elevated in Fbn1C1039G/+ smooth muscle cells (n=5 per group). Fbn1C1039G/+ smooth muscle cell Ras-dependent ERK signaling and MMP activity were reduced following MA treatment (n=5 per group). Corroborating in vitro findings, MMP activity was also decreased in pravastatin-treated mice. Conclusions Aneurysm reduction in Fbn1C1039G/+ mice following pravastatin and MA treatment was associated with a decrease in Ras-dependent ERK signaling. MMP activity can be reduced by diminishing Ras signaling.
Keywords: Marfan syndrome; aneurysm; cell signaling; vascular biology.