Purpose: The purpose of this study is to characterize the mutational landscape across the spectrum of urothelial carcinoma (UC) to identify mutational features and potential therapeutic targets.
Experimental design: Using targeted exome sequencing (n = 237 genes), we analyzed the mutation spectra of 82 low-grade nonmuscle-invasive bladder cancers (LG-NMIBC), 126 high-grade (HG) NMIBC, 199 muscle-invasive bladder cancers (MIBC), 10 LG-upper tract urothelial cancers (LG-UTUC), and 55 HG-UTUC.
Results: FGFR3 and KDM6A mutations were significantly more common in LG-NMIBC (72% and 44%, respectively) versus other bladder subtypes. FGFR3 alterations were also enriched in LG-UTUC versus HG-UTUC tumors (80% vs. 16%). In contrast, TP53 and RB1 mutations were significantly more frequent in all 3 HG urothelial carcinoma subtypes than in LG-NIMBC (45%-58% vs. 4%; 9%-22% vs. 0; respectively). Among LG-NMIBC tumors, KDM6A mutations were more common in women than in men (71% vs. 38%). HG-NMIBC and MIBC had higher tumor mutational burden (TMB) than LG-NMIBC (P = 0.001 and P < 0.01, respectively). DNA-damage repair (DDR) alterations were associated with a higher TMB in HG-NMIBC and MIBC tumors, and these two tumor types were also enriched for an APOBEC mutational signature compared with LG-NMIBC and HG-UTUC. Alterations in FGFR3, PIK3CA, and EP300 correlated with worse overall survival in HG-UTUC and occurred concurrently.
Conclusions: Our analysis suggests that a fraction of MIBCs likely arise from precursor lesions other than LG-NMIBC. KDM6A mutations are twice as common in women with LG-NIMBC than those in men. DDR gene mutations and APOBEC mutagenesis drive mutations in HG-NMIBC and MIBC. UTUC has a distinct mutation profile from bladder cancer.
©2018 American Association for Cancer Research.