Cadmium (Cd) is an environmental pollutant that poses serious health hazards. Due to the increasing contamination of aquatic systems with Cd, the increased accumulation of Cd in fish has become a food safety and public health concern. The present study was conducted to investigate the effects of waterborne Cd exposure on the microbial community composition and diversity in the gut of common carp. Common carp were exposed to three waterborne Cd concentrations (0, 50 and 500 μg Cd L-1) for 4 weeks. Our results indicated that Cd exposure profoundly affected the composition of the gut microbiota in the common carp. At the phylum level, Saccharibacteria were detected in only the 0 μg and 50 μg Cd L-1 exposure groups, and the abundance of Fusobacteria decreased with increasing Cd concentration, while the abundance of Firmicutes increased with increasing Cd concentration. At the genus level, Cetobacterium was the dominant group in the gut of the common carp, and the abundance of Cetobacterium decreased after Cd exposure. Notably, the abundance of Akkermansia muciniphila, a probiotic, was found to decrease after Cd exposure, and the proportions of some Cd-resistant bacteria were found to increase following Cd exposure. Our results also demonstrated that Cd exposure decreased the community diversity of the gut microbiota. These results suggest that Cd exposure may impact the gut homeostasis of common carp and further affect the health of the organism.
Keywords: Cadmium; Cyprinus carpio; Gut microbiota; High-throughput sequencing.
Copyright © 2018 Elsevier Inc. All rights reserved.