TGF-β2 uses the concave surface of its extended finger region to bind betaglycan's ZP domain via three residues specific to TGF-β and inhibin-α

J Biol Chem. 2019 Mar 1;294(9):3065-3080. doi: 10.1074/jbc.RA118.005210. Epub 2018 Dec 31.

Abstract

Betaglycan (BG) is a membrane-bound co-receptor of the TGF-β family that selectively binds transforming growth factor-β (TGF-β) isoforms and inhibin A (InhA) to enable temporal-spatial patterns of signaling essential for their functions in vivo Here, using NMR titrations of methyl-labeled TGF-β2 with BG's C-terminal binding domain, BGZP-C, and surface plasmon resonance binding measurements with TGF-β2 variants, we found that the BGZP-C-binding site on TGF-β2 is located on the inner surface of its extended finger region. Included in this binding site are Ile-92, Lys-97, and Glu-99, which are entirely or mostly specific to the TGF-β isoforms and the InhA α-subunit, but they are unconserved in other TGF-β family growth factors (GFs). In accord with the proposed specificity-determining role of these residues, BG bound bone morphogenetic protein 2 (BMP-2) weakly or not at all, and TGF-β2 variants with the corresponding residues from BMP-2 bound BGZP-C more weakly than corresponding alanine variants. The BGZP-C-binding site on InhA previously was reported to be located on the outside of the extended finger region, yet at the same time to include Ser-112 and Lys-119, homologous to TGF-β2 Ile-92 and Lys-97, on the inside of the fingers. Therefore, it is likely that both TGF-β2 and InhA bind BGZP-C through a site on the inside of their extended finger regions. Overall, these results identify the BGZP-C-binding site on TGF-β2 and shed light on the specificity of BG for select TGF-β-type GFs and the mechanisms by which BG influences their signaling.

Keywords: ILV methyl labeling; betaglycan; cardiac development; cell signaling; cell surface receptor; endocrinology; finger region; nuclear magnetic resonance (NMR); transforming growth factor β (TGF-B).

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Binding Sites
  • Humans
  • Hydrogen-Ion Concentration
  • Inhibins / metabolism*
  • Mice
  • Models, Molecular
  • Protein Binding
  • Protein Domains
  • Protein Structure, Secondary
  • Proteoglycans / chemistry*
  • Proteoglycans / metabolism*
  • Rats
  • Receptors, Transforming Growth Factor beta / chemistry*
  • Receptors, Transforming Growth Factor beta / metabolism*
  • Substrate Specificity
  • Transforming Growth Factor beta2 / chemistry*
  • Transforming Growth Factor beta2 / metabolism*

Substances

  • Proteoglycans
  • Receptors, Transforming Growth Factor beta
  • Transforming Growth Factor beta2
  • inhibin A
  • betaglycan
  • Inhibins

Associated data

  • PDB/2TGI
  • PDB/5TX6
  • PDB/2R53
  • PDB/3EVS