Teicoplanin Reprogrammed with the N-Acyl-Glucosamine Pharmacophore at the Penultimate Residue of Aglycone Acquires Broad-Spectrum Antimicrobial Activities Effectively Killing Gram-Positive and -Negative Pathogens

ACS Infect Dis. 2019 Mar 8;5(3):430-442. doi: 10.1021/acsinfecdis.8b00317. Epub 2019 Jan 11.

Abstract

Lipoglycopeptide antibiotics, for example, teicoplanin (Tei) and A40926, are more potent than vancomycin against Gram-positive (Gram-(+)) drug-resistant pathogens, for example, methicillin-resistant Staphylococcus aureus (MRSA). To extend their therapeutic effectiveness on vancomycin-resistant S. aureus (VRSA), the biosynthetic pathway of the N-acyl glucosamine (Glc) pharmacophore at residue 4 (r4) of teicoplanin pseudoaglycone redirection to residue 6 (r6) was attempted. On the basis of crystal structures, two regioselective biocatalysts Orf2*T (a triple-mutation mutant S98A/V121A/F193Y) and Orf11*S (a single-mutation mutant W163A) were engineered, allowing them to act on GlcNAc at r6. New analogs thereby made show marked antimicrobial activity against MRSA and VRSA by 2-3 orders of magnitude better than teicoplanin and vancomycin. The lipid side chain of the Tei-analogs armed with a terminal mono- or diguanidino group extends the antimicrobial specificity from Gram-(+) to Gram-negative (Gram-(-)), comparable to that of kanamycin. In addition to low cytotoxicity and high safety, the Tei analogs exhibit new modes of action as a result of resensitization of VRSA and Acinetobacter baumannii. The redirection of the biosynthetic pathway for the N-acyl-Glc pharmacophore from r4 to r6 bodes well for large-scale production of selected r6,Tei congeners in an environmentally friendly synthetic biology approach.

Keywords: Acinetobacter baumannii; MRSA/VRSA; guanidination; lipoglycopeptide antibiotics; protein engineering; regioselectivity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acinetobacter baumannii / drug effects*
  • Acinetobacter baumannii / genetics
  • Acinetobacter baumannii / metabolism
  • Anti-Bacterial Agents / chemistry*
  • Anti-Bacterial Agents / pharmacology*
  • Glucosamine / chemistry
  • Glucosamine / pharmacology*
  • Methicillin-Resistant Staphylococcus aureus / drug effects*
  • Methicillin-Resistant Staphylococcus aureus / genetics
  • Methicillin-Resistant Staphylococcus aureus / metabolism
  • Microbial Sensitivity Tests
  • Stereoisomerism
  • Teicoplanin / chemistry*
  • Teicoplanin / pharmacology
  • Vancomycin / pharmacology

Substances

  • Anti-Bacterial Agents
  • Teicoplanin
  • Vancomycin
  • Glucosamine