Annually, a great volume of sediment and suspended particulate matters (SPMs) enters into the seas through estuaries. In the estuarine zone, metals present in SPMs may undergo conservative or non-conservative changes. In the present study, oxidation-reduction potential (ORP) as the most complex chemical parameter of open sea water and its relationship with the behavior of t metals in the estuarine area were investigated. Dissolved oxygen was used as a strong oxidant to increase the ORP. According to the absorption and desorption experiment, Mn and Cu are desorbed from SPMs during estuarine mixing. However, Zn and Pb are absorbed into the SPMs. In addition, the analysis results were indicative of the conservative behavior of Ni. The results of the three-step chemical partitioning of the SPMs revealed that Mn and Cu are desorbed from the SPMs physically, whereas Zn is absorbed into the SPMs chemically. Also, results showed that Pb is physically desorbed from the SPMs, while it is absorbed into SPMs chemically. All metals, except for Ni and Zn, whose reactions with the SPMs are not affected by an increase in the ORP, are affected by the escalation of this parameter.
Keywords: Cluster analysis; Estuary; Metal species; Pollution; Sequential extraction; Trace metal.