The aim of the present study is to use Physalis mottle virus (PhMV) coat protein (CP) as a scaffold to display the neutralizing epitopes of Infectious bursal disease virus (IBDV) VP2. For this, three different chimeric constructs were synthesized by replacing the N-terminus of PhMV CP with tandem repeats of neutralizing epitopes of IBDV VP2 and expressed in Escherichia coli. Expression analysis revealed that all the three recombinant chimeric coat protein subunits are soluble in nature and self-assembled into virus-like particles (VLPs) as evidenced through sucrose density gradient ultracentrifugation. The chimeric VLPs were characterized by various biochemical and biophysical techniques and found that they are stable and structurally sound. When the chimeric VLPs were used as coating antigen, they were able to detect IBDV antibodies. These results indicated that the chimeric VLPs can be used as potential vaccine candidates for the control of IBDV, which needs to be further evaluated in animal models.
Keywords: Coat protein (CP); Infectious bursal disease virus (IBDV); Physalis mottle virus (PhMV); Virus-like particles (VLPs).
Copyright © 2018 Elsevier B.V. All rights reserved.