Spatially resolved steady-state negative capacitance

Nature. 2019 Jan;565(7740):468-471. doi: 10.1038/s41586-018-0855-y. Epub 2019 Jan 14.

Abstract

Negative capacitance is a newly discovered state of ferroelectric materials that holds promise for electronics applications by exploiting a region of thermodynamic space that is normally not accessible1-14. Although existing reports of negative capacitance substantiate the importance of this phenomenon, they have focused on its macroscale manifestation. These manifestations demonstrate possible uses of steady-state negative capacitance-for example, enhancing the capacitance of a ferroelectric-dielectric heterostructure4,7,14 or improving the subthreshold swing of a transistor8-12. Yet they constitute only indirect measurements of the local state of negative capacitance in which the ferroelectric resides. Spatial mapping of this phenomenon would help its understanding at a microscopic scale and also help to achieve optimal design of devices with potential technological applications. Here we demonstrate a direct measurement of steady-state negative capacitance in a ferroelectric-dielectric heterostructure. We use electron microscopy complemented by phase-field and first-principles-based (second-principles) simulations in SrTiO3/PbTiO3 superlattices to directly determine, with atomic resolution, the local regions in the ferroelectric material where a state of negative capacitance is stabilized. Simultaneous vector mapping of atomic displacements (related to a complex pattern in the polarization field), in conjunction with reconstruction of the local electric field, identify the negative capacitance regions as those with higher energy density and larger polarizability: the domain walls where the polarization is suppressed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.