Biodiversity in natural systems can be maintained either because niche differentiation among competitors facilitates stable coexistence or because equal fitness among neutral species allows for their long-term cooccurrence despite a slow drift toward extinction. Whereas the relative importance of these two ecological mechanisms has been well-studied in the absence of evolution, the role of local adaptive evolution in maintaining biological diversity through these processes is less clear. Here we study the contribution of local adaptive evolution to coexistence in a landscape of interconnected patches subject to disturbance. Under these conditions, early colonists to empty patches may adapt to local conditions sufficiently fast to prevent successful colonization by other preadapted species. Over the long term, the iteration of these local-scale priority effects results in niche convergence of species at the regional scale even though species tend to monopolize local patches. Thus, the dynamics evolve from stable coexistence through niche differentiation to neutral cooccurrence at the landscape level while still maintaining strong local niche segregation. Our results show that neutrality can emerge at the regional scale from local, niche-based adaptive evolution, potentially resolving why ecologists often observe neutral distribution patterns at the landscape level despite strong niche divergence among local communities.
Keywords: coexistence; community monopolization; ecoevolutionary feedback; local adaptation; metacommunity.