Cathepsin S (CatS) is upregulated in the lungs of patients with cystic fibrosis (CF). However, its role in CF lung disease pathogenesis remains unclear.In this study, β-epithelial Na+ channel-overexpressing transgenic (βENaC-Tg) mice, a model of CF-like lung disease, were crossed with CatS null (CatS-/-) mice or treated with the CatS inhibitor VBY-999.Levels of active CatS were elevated in the lungs of βENaC-Tg mice compared with wild-type (WT) littermates. CatS-/-βENaC-Tg mice exhibited decreased pulmonary inflammation, mucus obstruction and structural lung damage compared with βENaC-Tg mice. Pharmacological inhibition of CatS resulted in a significant decrease in pulmonary inflammation, lung damage and mucus plugging in the lungs of βENaC-Tg mice. In addition, instillation of CatS into the lungs of WT mice resulted in inflammation, lung remodelling and upregulation of mucin expression. Inhibition of the CatS target, protease-activated receptor 2 (PAR2), in βENaC-Tg mice resulted in a reduction in airway inflammation and mucin expression, indicating a role for this receptor in CatS-induced lung pathology.Our data indicate an important role for CatS in the pathogenesis of CF-like lung disease mediated in part by PAR2 and highlight CatS as a therapeutic target.
Copyright ©ERS 2019.