MicroRNA-153 suppresses cell invasion by targeting SNAI1 and predicts patient prognosis in glioma

Oncol Lett. 2019 Jan;17(1):1189-1195. doi: 10.3892/ol.2018.9706. Epub 2018 Nov 15.

Abstract

Glioma is the most common and rapidly progressive type of malignant primary brain tumor in adults. miR-153 plays a major role in many malignancies; nevertheless, few studies have been conducted on glioma. The aim of the present study was to explore the role of miR-153 and SNAI1 on invasion in glioma. Reverse transcription-quantitative PCR was employed to measure the expression levels of miR-153 and SNAI1 mRNA. Transwell assay was utilized to calculate the capacity of invasion. Luciferase report assay was applied to detect whether SNAI1 was a target of miR-153. miR-153 was downregulated in glioma tissues and cells versus paracancerous tissues and normal immortalized gliocyte HEB cells. Transwell assay was used to measure whether a low expression of miR-153 in glioma indicated inhibition of cell invasion. We verified that SNAI1 was a target of miR-153 and had a negative association with miR-153 detected by luciferase reporter assay. Additionally, miR-153 suppressed cell invasive ability by regulating SNAI1 expression, whose partial function was reversed by SNAI1. miR-153 suppressed cell invasion of glioma by directly targeting SNAI1. Thus, miR-153/SNAI1 axis may be a novel target for cervical cancer treatment.

Keywords: SNAI1; glioma; invasion; miR-153; prognosis.