Background: Epigenetic therapy is a promising popular treatment modality for various cancers. Histone modification and miRNA should not be underestimated in lung cancer. This study aimed to investigate whether chidamide, a histone deacetylase inhibitor (HDACi), which inhibits telomerase activity and induces cell cycle arrest, influences ROS and miRNA production in non-small cell lung cancer (NSCLC) cells.
Methods: H1355 and A549 were treated with chidamide. The analysis of DNA content was measured by FACSCalibur equipped with a 488 nm laser. H1355 cells were transfected with miR-129-3p mimic by Lipofectamine2000. Telomerase activity was performed on the telomeric repeat amplification protocol (TRAP) assay. Detection of thymidylate synthase (TS), p21, p53, pRB, and β-actin, were performed by western blot analysis.
Results: Our data showed that expression of TS, p21, and pRB were altered in the presence of chidamide by PCR and western blot. Using BrdU-incorporation analysis, we found that chidamide induced G1 arrest through the regulation of the TS gene by miR-129-3p. Chidamide was shown to suppress telomerase activity in the TRAP assay and reduced the expression of human telomerase reverse transcriptase (hTERT) by PCR and q-PCR in H1355 and A549 cells. Chidamide increased the generation of reactive oxygen species (ROS) by flow cytometry. N-acetyl cysteine (NAC), a ROS scavenger, attenuated chidamide-induced telomerase activity inhibition.
Conclusion: Chidamide repressed telomerase activity through ROS accumulation and cell cycle arrest by miR-129-3p upregulation in both H1355 and A549 cells. This is the first study to demonstrate that chidamide induces miR-129-3p upregulation and ROS accumulation, leading to cell cycle arrest.
Keywords: Cell cycle arrest; Chidamide; Lung cancer; Reactive oxygen species (ROS); miR-129-3p.
Copyright © 2018. Published by Elsevier GmbH.