Motivation: Glycan identification has long been hampered by complicated branching patterns and various isomeric structures of glycans. Multistage mass spectrometry (MSn) is a promising glycan identification technique as it generates multiple-level fragments of a glycan, which can be explored to deduce branching pattern of the glycan and further distinguish it from other candidates with identical mass. However, the automatic glycan identification still remains a challenge since it mainly relies on expertise to guide a MSn instrument to generate spectra.
Results: Here, we proposed a novel method, named bestFSA, based on a best-first search algorithm to guide the process of spectrum producing in glycan identification using MSn. BestFSA is able to select the most appropriate peaks for next round of experiments and complete the identification using as few experimental rounds. Our analysis of seven representative glycans shows that bestFSA correctly distinguishes actual glycans efficiently and suggested bestFSA could be used in practical glycan identification. The combination of the MSn technology coupled with bestFSA should greatly facilitate the automatic identification of glycan branching patterns, with significantly improved identification sensitivity, and reduce time and cost of MSn experiments.
Availability and implementation: http://glycan.ict.ac.cn.
Supplementary information: Supplementary data are available at Bioinformatics online.
© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: [email protected].