Objective: Develop an accelerated cine displacement encoding with stimulated echoes (DENSE) cardiovascular magnetic resonance (CMR) sequence to enable clinically feasible myocardial strain evaluation in patients with dilated cardiomyopathy (DCM).
Materials and methods: A spiral cine DENSE sequence was modified by limiting the field of view in two dimensions using in-plane slice-selective pulses in the stimulated echo. This reduced breath hold duration from 20RR to 14RR intervals. Following phantom and pilot studies, the feasibility of the sequence to assess peak radial, circumferential, and longitudinal strain was tested in control subjects (n = 18) and then applied in DCM patients (n = 29).
Results: DENSE acquisition was possible in all participants. Elements of the data were not analysable in 1 control (6%) and 4 DCM r(14%) subjects due to off-resonance or susceptibility artefacts and low signal-to-noise ratio. Peak radial, circumferential, short-axis contour strain and longitudinal strain was reduced in DCM patients (p < 0.001 vs. controls) and strain measurements correlated with left ventricular ejection fraction (with circumferential strain r = - 0.79, p < 0.0001; with vertical long-axis strain r = - 0.76, p < 0.0001). All strain measurements had good inter-observer agreement (ICC > 0.80), except peak radial strain.
Discussion: We demonstrate the feasibility of CMR strain assessment in healthy controls and DCM patients using an accelerated cine DENSE technique. This may facilitate integration of strain assessment into routine CMR studies.
Keywords: Cardiovascular magnetic resonance; DENSE; Dilated cardiomyopathy; Function; Strain; Text.